1. Getting started with ChocLet

Launching

To launch the shell of ChocLet, just run the following command .

$ java —jar choclet.jar
>

Variable declaration

You can declare variables using the keyword let.

let x = 10;
let y = ”"some.string”;
let z = 13.385;

The types of the variables are infered, and you can’t change the type of a variable.

x = 10; // x is an int
0.1; // Error, No operator ’'=’ for type ’int’ and ’double’

ChocLet give some ways to declare arrays.

(1, 2, 3]; // = is an array of int, of size &
of size 100

let x
let y = [100 of float]; // y is an array of float,

All the values inside an allocated array, are null.

let x = [10 of int];

// let y =x [0] + 10; // NullPointerEzception
x [0] = 3; // Ok

let y =x [0] + 10; // Ok

You can concatenate arrays of the same type using the operator ~.

let x = [1, 2, 3] ~ [4, 5, 6];
let y = ”same_for.” 7 ”"strings”;
println (x); // [1, 2, 8, 4, &5, 5/;
println (y); // same for strings

Source file

You can write source code in a file. The file must have the extension .clt. To run a file, there is

two ways, the first one is to pass the file as an argument of the jar file.

H$ java —jar choclet.jar myfile.clt

The second one is to import the function described in the file using the keyword import. It

won’t execute the code inside the file, but import all declared function.
H> import myfile;

Functions

def foo (a, b) {
println (a, b);
¥

// foo is a function and we call it
foo (1, "hi_ ll”);

Flow Control

Values can be controlled conditionally using the if and else statements.

let n = 5;
if n <0 {

println (n, ”._.is.negative”);
} else if n > 0 {

println (n, ”._.is.positive”);
} else {

println (n, ”"_.is.zero”);
}

You can also do loops with the while keyword.

let n = 1;
// Loop while n is less than 101
while n < 101 {
if n%2=0 {
println (”even”);
} else {
println (7odd”);
}
n

=n + 1;

Or iterate over a range of value with the keyword for

for i in 0 .. 101 {
if i %2—0{
println ("even”);
} else {
println (7odd”);
}

2. Choco interface
ChocLet is designed to use Choco solver.

let a = choco.int (0, 10);
let b = choco.int (0, 10);

This declaration means that a, and b can have a value between 0 to 10.
H (a != Db).post ();
In this instruction, we inform choco, that we don’t want that a and b have the same value.

while choco.solve ()
println (a, 7!=", b);

We request a resolution, and while there is a valid solution, we print the value of a and b.
In choco there is some special constraint on boolean, that will be posted automatically. Those
constraints are the simple and double implication.

~—

7

b) — (¢ !=4d
b

Choco have some predefined global constraint, and some times we want to use them.

in choco {
// allDifferent is a choco function declared somewhere
def allDifferent —> ChocoConstraint;

}

// creating an array of 10 wvar, between 0 and 10
let a = choco.intArray (”A”, 10, 0, 10);

choco. allDifferent (a).post (); // Ok
choco.solve ();

println (a);

Usefull global constraints

Choco give us some simplification to compute some information on arrays of Chocolnt. It give
us access to the sum.

let resultOfSum = 10;

choco.sum (myarray, ”"=", resultOfSum).post ();

// The operator inside of the function can be either '<’, '>7, ’'=",
)!:}’ }<:7’ ?>:?

// It will ensure that the sum of the array respect the operator on the
result.

// It can be used to store the sum into a Chocolnt too.
let resultVar = choco.int (0, 1000);

2 b

choco.sum (myarray, ”"=", resultVar).post ();

Or the number of time an element appears in the array.

let resultOfCount = choco.int (0, myArray.len);
let itemToCount = 1;
choco.count (itemToCount, myArray, resultOfCount).post ();

BinPacking

The last important one for us is the binPacking constraint. This constraint will take 3 elements :
— position : An Array of position

— size : An Array of size, with the same length as position

— capacity : An Array of capacity

The array of position will represent a position in the capacity array, it means that all the value
stored in position must have a range between [0, capacity.len|.

This constraint will ensure that the sum of the size of the elements with a position b

size;, otherwise

|size] . .
0 f tion; # b
Vb € [0, |capacity|[(E S|S= { ’ if position; 7) < capacityy, (1)
=0

It can be used in ChocLet after declaring the global constraint.

let position = choco.intArray ("P”, 3, 0, 2);
let size = [10, 5, 9];
let capacity = choco.intArray (”C”, 2, 0, 20);

// The last parameter is just an offset, we don’t use it
choco.binPacking (position, size, capacity, 0).post ();

// The capacity array will be informed.

// Possible solutions are capacity = [15, 9] or [19, 5]
// position = [0, 0, 1] or [0, 1, 0]

