
Practical	session	5	
(3H)	

	
Java	programming	

	
	
	
Programing with the VMware Java SDK can be a real pain. Retrieving a simple property
on a VMware object requires lot of lines of code. We will try the VI Java API which is a
set of Java libraries that sits on top of the existing vSphere SDK Web Services interface.

In order to retrieve properties, perform operations or modify entities within the vSphere
API, it is important to understand the vSphere Object Model’s structure and
relationships. The vSphere API consists of three types of objects:

• Managed Object: is a server side object like VMs or Hosts
• Managed Object Reference: is a client reference to a Managed Object
• Data Object: contains information about a Managed Object and can also be used to transfer

data between a client and server

Imagine you want to get the names of all hosts in the inventory, or maybe you want to
monitor for changes to the power state of all VMs in the inventory, or you want to keep
track of the host that each VM is running on, you have to use the Property Collector.

The PropertyCollector gives you the ability to retrieve properties of the ManagedObject
and also monitor the changes of any properties you interested in.

In order to use the PropertyCollector to retrieve informations from Managed Object, you
need to specify what data you want to retrieve and this is done with something called
PropertyFilterSpec and this object has at least 2 properties:

• PropertySpec : What property you want to retrieve, the name of a VM for exemple
• ObjectSpec: It identifies the starting object in the inventory
• TraversalSpec: (optional): Define how to traverse the inventory

And those objects have other objects as parameter,and you need to create. Obviously,
you see that it requires many lines of code before retrieving the name of a VM or
whatever properties you want to get from your vCenter.

vijava (Virtual Infrastructure API) is an open source project created by Steve Jin from
VMware R&D. It aims to simplify the use of VI SDK and improve the performance.

This API encapsulate the PropertyCollector behind Java methods and provide a whole
bunch of ManagedObject that will allow you to manipulate vmware objects without any
effort.

The picture below represent the object architecture that will be very helpful to code you
program and you will see further in this article that I manipulate those objects to retrieve
specific properties.

There	is	no	really	documentation,	but	you	can	read	:	
http://grepcode.com/snapshot/repo1.maven.org/maven2/com.cloudbees.thirdparty/vi
java/5.5-beta/	
	
You	fin	many	samples	here	:	
https://github.com/Juniper/vijava/tree/master/src/com/vmware/vim25/mo/samples	
	
You	can	test	YAVIJA,	the	new	version	of	vijava	:	http://www.yavijava.com	
https://github.com/yavijava/yavijava	
	
You can compile like this :
javac ListHosts.java -cp “./dom4j1.6.1.jar:./vijava55b20130927.jar”

And run :
java -cp "./dom4j-1.6.1.jar:./vijava55b20130927.jar:." ListHosts

With YAVIJAVA :
javac -cp "./dom4j-1.6.1.jar:./yavijava-6.0.05.jar:./log4j-1.2.17.jar:."
ListHosts.java
Run
java -cp "./dom4j-1.6.1.jar:./yavijava-6.0.05.jar:./log4j-1.2.17.jar:."
ListHosts

1)	Connect	to	the	ServiceInstance	of	your	ESXi	
	
public ServiceInstance Initialisation(

String url,
String username,
String password)
throws RemoteException, MalformedURLException {

ServiceInstance si =
new ServiceInstance(new URL(url), username, password, true);

return si;
}
	
This is the method you can use to connect your ESXI servive. The initialization method
takes 3 parameters which are:

• Url: this is the URL of the ESXi service and it look like this
• https://192.168.1.1/sdk/vimService

• Username: nothing special
• Password: nothing special

This method will return a ServiceInstance object which will be used to have access to
your VMware object tree (see the picture).

2)	Retrieve	ManagedEntity	from	Inventory	Navigator	
	
public ManagedEntity[] RetreiveVM(ServiceInstance si)

throws InvalidProperty, RuntimeFault, RemoteException{
ManagedEntity[] mes =
new InventoryNavigator(

si.getRootFolder()).searchManagedEntities("VirtualMachine");
return mes;
}

	
This method takes the ServiceInstance object that we had in the previous section. Here
we have to create a rootFolder object from our ServiceInstance object.

And next we can already retrieve ManagedObject (VirtualMachine in my exemple) with
the searchManagedEntities method and fill the mes[] table with all the VMs of your
infrastructure.

From the InventoryNavigator object, you can use:

• searchManagedEntities(« VirtualMachine »)
• searchManagedEntities(« HostSystem »)
• searchManagedEntities(« Datacenter »)
• and some other that i am not aware of…

With these methods, you can already retrieve VMs from your vCenter. The next will be
to retrieve information of the VM and you will see that in the next section.

3) Convert ManagedEntity object and retrieve VM properties

public void setSelectedVM(int index) {

VirtualMachine vm = (VirtualMachine) mes[index];
System.out.println(
"Guest OS:"+vm.getSummary().getConfig().guestFullName);

}

First of all, you will have to convert the « mes » object into a « virtualMachine » object.
Then you are free to exploit the hundreds of properties of the VM object.
	
4)	Question	1	

Try	the	example		ListHost	
	
5)	Question	2	
	 List	all	VMs,		print	VM	configuration	
	
6)	Question	3	
	 	Retrieve	VM	hardware	properties	:	
	 	 	 VirtualDisk	
	 	 	 VirtualEthernetCard	
	 	 	 MAC	address	
	
	
7)	Question		4	
	 Implement,	the	VM	powerOn,	powerOff,	suspend,	resume.	
	
8)	Question	5		
	
We’ll	be	working	with	snapshots,	creating	snapshots.	
You	need	to	perform	the	following	steps:	

• Get	a	new	ServiceInstance	
• Search	for	the	virtual	machine	
• Create	a	snapshot	task	

	
Use	the	createSnapshot_Task	method	in	VirtualMachine	
	
The	call	to	createSnapshot_Task	immediately	returns	with	a	Task	object.	Using	this	
Task	instance,	you	can	monitor	what’s	the	progress	of	the	task.	It	is	done:	
• Getting	a	TaskInfo	instance	from	the	task	object	
• Checking	for	the	current	state	
You	can	do	it	in	a	loop	like	this:	

TaskInfoState state;
do { Thread.sleep(1000); state = task.getTaskInfo().getState();
 System.out.println("State="+state); }
while (state != TaskInfoState.error && state != TaskInfoState.success);

	
	

	

8)	Question	6		
	 	

Your	ESX	system	collects	data	at	runtime	about	performance	for	all	aspects	of	the	
system	(CPU,	disk,	memory,	network,	and	so	on).	The	data	in	the	counters	is	accessible	
through	the	PerformanceManager	class.	
You	can	get	an	instance	of	the	PerformanceMangager	like	this:	
	
ServiceInstance si = new ServiceInstance(

new URL(url), USER_NAME, PASSWORD, true);
PerformanceManager perfMgr = si.getPerformanceManager();

	
	The	performance	manager	has	a	getPerfCounters	method	which	will	return	a	list	of	all	
available	counters:	
	
PerfCounterInfo[] perfCounters = perfMgr.getPerfCounter();
for (int i = 0; i < perfCounters.length; i++) {
PerfCounterInfo perfCounterInfo = perfCounters[i];
String perfCounterString = perfCounterInfo.getNameInfo().getLabel()

+ " (" + perfCounterInfo.getGroupInfo().getKey() + ")
in
" + perfCounterInfo.getUnitInfo().getLabel()
+ " (" + perfCounterInfo.getStatsType().toString() + ")";
System.out.println(perfCounterInfo.getKey() + " : " +

perfCounterString); }

This	will	return	a	list	like	this:	
	
1 : Usage (cpu) in Percent (rate)
...
336 : Queue write latency (disk) in Millisecond (absolute)
337 : Physical device command latency (disk) in Millisecond (absolute)
338 : Kernel command latency (disk) in Millisecond (absolute)
	
perfCounterInfo.getKey()	returns	the	key	with	which	you	can	identify	the	counter	to	get	
some	information	about	the	performance	of	the	system.	
	
A	query	for	performance	counter	is	done	using	the	PerformanceManager.	In	order	to	
query	for	counters	you	need	to	create	an	instance	of	PerfQuerySpec	which	defines	what	
we’ll	be	querying.	You	need	to	define	the	following:	

• which	entity	should	be	queried	(in	our	case	the	host)	
• which	metrics	should	be	queried	(e.g.	the	counter	number	XX	(active	memory	in	

KB)	
• the	query	interval:	The	interval	(sampling	period)	in	seconds	for	which	

performance	statistics	are	queried.	There	is	a	set	of	intervals	for	historical	
statistics.	To	retrieve	the	greatest	available	level	of	detail,	the	provider’s	
refreshRate	may	be	used	for	this	property	

	
Then	let’s	get	the	interval	ID:	
	
PerfProviderSummary summary = perfMgr.queryPerfProviderSummary(host);
int perfInterval = summary.getRefreshRate();
System.out.println("Refresh rate = " + perfInterval);
	
Now	we	can	create	a	PerfQuerySpec:	

PerfMetricId pmis ….
PerfQuerySpec qSpec = new PerfQuerySpec();
qSpec.setEntity(host.getMOR());
qSpec.setMetricId(pmis);
qSpec.intervalId = perfInterval;
	
and	retrieve	value	:	
PerfEntityMetricBase[] pembs =

perfMgr.queryPerf(new PerfQuerySpec[] { qSpec });
Some	things	like	pembs[i].getValue();	
	
	
	

